Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Swirl number effect on the unsteady characteristics of turbulent combustion in axial-swirl combustorAIAA (Ed.)Swirl combustion is one of the most efficient approach to efficient combustion processes and therefore, it has received great interest particularly from aerospace industry. Swirl combustion has been studied in the past both experimentally and computationally. However, in spite of the extended studies, the swirl combustion is still not well understood and therefore, further studies are required. One of the open questions in the swirl combustion is the effect of the swirl number on the combustion efficiency and instabilities. Over decades, extensive experimental and computational studies of swirl combustion have been performed. The experimental studies of swirl combustion are quite challenging due to the unsteady nature of the combustion process. To overcome these challenges, computational studies have been used in the study of turbulent combustion. The present study concerns the effect of the swirl number on the combustion efficiency and flame stability. The combustion efficiency is assessed based on the temperature developed inside the combustion chamber and NOx levels. The effect of air/fuel blowing ratio on the combustion efficiency and instability is also investigated in this research. The computations are carried out using the large-eddy simulation (LES) approach along with the flamelet combustion model. The analysis reveals the unsteady nature of the flame and thus, its departure from the core of the combustor. The analysis also reveals the presence of a region of high level of temperature, NO and2CO , inside the combustormore » « less
-
SAE (Ed.)An investigation of the performance and emissions of a Fischer-Tropsch Coal-to-Liquid (CTL) Iso-Paraffinic Kerosene (IPK) was conducted using a CRDI compression ignition research engine with ULSD as a reference. Due to the low Derived Cetane Number (DCN), of IPK, an extended Ignition Delay (ID), and Combustion Delay (CD) were found for it, through experimentation in a Constant Volume Combustion Chamber (CVCC). Neat IPK was analyzed in a research engine at 4 bar Indicated Mean Effective Pressure (IMEP) at three injection timings: 15°, 20°, and 25° BTDC. Combustion phasing (CA50) was matched with ULSD at 10.8° and 16° BTDC. The IPK DCN was found to be 26, while the ULSD DCN was significantly higher at 47 in a PAC CID 510. In the engine, IPK’s DCN combined with its short physical ignition delay and long chemical ignition delay compared to ULSD, caused extended duration in Low Temperature Heat Release (LTHR) and cool flame formation. It was found in an analysis of the Apparent Heat Release Rate (AHRR) curve for IPK that there were multiple Negative Temperature Coefficient (NTCR) regions before the main combustion event. The High Temperature Heat Release (HTHR) of IPK achieved a greater peak heat release rate compared to ULSD. Pressure rise rate for IPK was observed to increase significantly with increase in injection timing. The peak in-cylinder pressure was also greater for IPK when matching CA50 by varying injection timing. Emissions analysis revealed that IPK produced less NOx, soot, and CO2 compared to ULSD. CO and UHC emissions for IPK increased.more » « less
-
SAE, Transactions (Ed.)An investigation into emissions differences and their correlations with differing combustion characteristics between F24 and Jet-A was conducted. Raw emissions data was taken from a single stage jet engine by a FTIR gas analyzer. Measurements of H2O, CO2, CO, NOx, and total hydrocarbon emissions (THC) were taken at 60K, 65K, and 70K RPM. At 70K RPM Jet-A and F-24 the emissions were similar at approx.: 4% H2O, 3% CO2, 970 PPM CO, 28 PPM NOx. Jet-A THC emissions were approx.: 1200 PPM THC, F24 THC emissions were lower by over 60%. The significantly lower amount of THC emissions for F24 suggests more complete combustion compared to Jet-A.more » « less
An official website of the United States government
